
Generalized(cohomology, orientations and characteristic classes)

Pedrotti, Riccardo

May 18, 2018

Contents

1 Monday 2
1.1 Spectra, homotopy group of spectra and ring spectra . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Homology and Cohomology induced by a Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Tuesday 5
2.1 A brief recall of (B, f)-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The construction of the Thom Spectra MU and the Thom-Pontrjaing Theorem . . . . . . . . 8

3 Tuesday afternoon 9
3.1 A Crash Course in Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Wednesday 13
4.1 Generalized Orientation for Manifold, Bundles and (B, f)-Structures . . . . . . . . . . . . . . 13

5 Thursday 16

6 Friday 19

7 TBD when 24
7.1 Oriented spectrum and the (Co)homology of CP∞ . . . . . . . . . . . . . . . . . . . . . . . . 24

Bibliography 31

1



The material written here is heavily influenced by Kochman’s account [1] on complex oriented cohomology
theory. Any mistakes in the notes are my own: if you find anything unclear or wrong write me an e-mail at
pedrotti.riccardo@math.utexas.edu.

1 Monday

1.1 Spectra, homotopy group of spectra and ring spectra

Let us denote SX = S1 ∧X for a pointed space X.

Definition 1.1.1. A spectrum E is a sequence {En, sn}, n ∈ Z, of CW-complexes En and CW-embeddings
sn : SEn → En+1.

Let us give a pair of examples: Let X be your favourite (pointed) CW-complex. Let us define the spectrum
Σ∞X as follows

(Σ∞X)n :=

{
∗ if n < 0

SnX if n ≥ 0
(1)

and the maps sn : S(SnX)→ Sn+1X is the identity map.
A very important instance of this construction is given by the case X = S0. The resulting spectrum, S∞S0

is often denoted by S and called the sphere spectrum.

Another useful construction is the following: given a spectrum E = {En, sn} and an integer k ∈ Z we can
define the shifted spectrum ΣkE as follows:

(ΣkE)n = En+k (2)

and as maps s′n : S(ΣkE)n → (ΣkE)n+1 we take sk+n.

We want to find a suitable definition for the category of spectra. For technical reason, it’s convenient to
give the following definition:

Definition 1.1.2. A cell of a spectrum E is a sequence {e, Se, . . . , Ske, . . . } where e is a cell of any En such
that e is not the suspension of any cell of En−1. If e is a cell of En of dimension d then the dimension of the
cell {e, Se, . . . , Ske, . . . } is d − n. A subspectrum F of a spectrum E is cofinal (in E) if every cell of E is
eventually in F , i.e. for every cell e ∈ En, there exists m such that Sme belongs to Fn+m.

Definition 1.1.3. • Let E = {En, sn} and F = {Fn, tn} be two spectra. A map f from E to F is a
family of pointed cellular maps fn : En → Fn such that the following diagram commutes:

SEn En+1

SFn Fn+1

sn

Sfn fn+1

tn

• Let E,F two spectra as above. Consider the set A of pairs (f ′, E′) where E′ is cofinal in E and
f ′ : E′ → F is a map. Consider the equivalence relation ∼ on A such that (f ′, E′) ∼ (f ′′, E′′) if and
only if f ′|B = f

′′

|B for some B ⊂ E′ ∩ E′′ with B cofinal in E. Every such equivalence class is called a
morphism from E to F .

We can therefore form the category S whose objects are spectra as defined above and morphisms of
spectra as arrows.

Definition 1.1.4. • Two maps g0, g1 : E → F of spectra are called homotopic if there exists a map
G : E ∧ I+ → F (called a homotopy) such that G coincides with gi on the subspectrum E ∧ {i, ∗},
i = 0, 1 of E. In this case we write g0 ' g1.
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• Two morphisms ϕ0, ϕ1 : E → F of spectra are called homotopic, if there exists a cofinal subspectrum
E′ of E and two maps gi : E

′ → F , gi ∈ ϕi for i = 0, 1, such that g0|E′ ' g1|E′ .

We can define the category HS, with spectra as objects and sets [E,F ] as sets of morphisms. Isomor-
phisms of HS are called equivalences, and we use the notation E ' F when E is equivalent to F .

Proposition 1.1.5. The spectra S1 ∧ E and ΣE are equivalent

Proof. See [4] 8.26

Definition 1.1.6. Let S be the sphere spectrum, we define the k-th homotopy group of a spectrum E as
follows:

πk(E) = [ΣkS, E]

It’s easy to see that πk(E) = colimN→∞ πk+N (EN ) where the directed limit is that of the directed system

· · · πk+N (EN ) πk+N+1(SEN ) πk+N+1(EN+1) · · ·S sN∗

In particular if E = Σ∞X then the homotopy group of E is the stable homotopy group of the space X.

Definition 1.1.7. A prespectrum is a family {Xn, tn}, n ∈ Z of pointed spaces Xn and pointed maps
tn : SXn → Xn+1.

Lemma 1.1.8. For every prespectrum {Xn, tn}n, there exist a spectrum E = {En, sn} and pointed homotopy
equivalences fn : En → Xn such that the diagram

SEn SXn

En+1 Xn+1

Sfn

sn tn

fn+1

commutes.

Proof. See [4] Proposition 8.3

Theorem 1.1.9. 1 There is a construction which assigns to spectra E,F a certain spectrum denoted by
E ∧ F . This construction is called the smash product E ∧ F of spectra and has the following properties:

1. It is a covariant functor of each of its arguments.

2. There are natural equivalences:

a = a(E,F,G) : (E ∧ F ) ∧G→ E ∧ (F ∧G)

τ = τ(E,F ) : E ∧ F → F ∧ E
l = l(E) : S ∧ E → E

r = r(E) : E ∧ S→ E

S = S(E,F ) : ΣE ∧ F → Σ(E ∧ F )

3. For every spectrum E and CW-complex X, there is a natural equivalence e = e(E,X) : E ∧ X →
E ∧ Σ∞X. In particular Σ∞(X ∧ Y ) ' Σ∞X ∧ Σ∞Y for every pair of CW-complexes X,Y

4. If f : E → F is an equivalence then f ∧ IdG : E ∧G→ F ∧G is.

5. Let {Eλ} be a family of spectra, and let iλ : Eλ →
∨
λEλ be the inclusions. Then the morphism

{iλ ∧ Id} :
∨
λ

(Eλ ∧ F )→ (
∨
λ

(Eλ)) ∧ F

is an equivalence

1Theorem 2.1 page 45 on [6]
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6. if A
f−→ B

g−→ C is a cofiber sequence of spectra, then so is the sequence

A ∧ E f∧Id−−−→ B ∧ E g∧Id−−−→ C ∧ E

for every spectrum E.

We are ready now to give the following definition:

Definition 1.1.10 (Ring Spectrum). 2 A ring spectrum is a triple (E,µ, ı) where E is a spectrum, µ : E∧E →
E and ı : S→ E are morphisms such that the following diagrams commute up to homotopy:

• Associativity:

(E ∧ E) ∧ E E ∧ E

E ∧ (E ∧ E) E ∧ E E

a

µ∧1

1∧µ µ

where a is a natural equivalence given by definition of the smash product of spectra.

• Unitary:

S ∧ E E ∧ E E ∧ S

E E E

ı∧1

l µ

1∧ı

r

Id Id

Where l, r are natural equivalences given by definition of the smash product of spectra.

The ring spectrum is commutative if the following diagram commutes up to homotopy:

E ∧ E E ∧ E

E E

τ

µ µ

Id

Where τ twists the factors of the smash product.
A morphism of ring spectra ϕ : (E,µ, ı) → (E′, µ′, ı′) is a morphism ϕ : E → E′ s.t. the following diagrams
commute up to homotopy:

E ∧ E E′ ∧ E′

E E′

ϕ∧ϕ

µ µ′

ϕ

S E

S E′

ı

Id ϕ

ı′

Examples of ring spectra are provided by spectra X equipped with maps:

Xn1
∧Xn2

→ Xn1+n2

which are suitably associative and and unital. This is the case for example of the sphere spectrum (whose
multiplication is the classical smash product) and the Thom spectra, which we will see later. Before concluding
this section, one has to take this example with a grain of salt. In order to be sure that this smash product
really factor through the homotopy category then one needs some additional compatibility conditions.

Proposition 1.1.11. Up to homotopy there is only one morphism of ring spectra S → X, for X any ring
spectrum.

2Definition 2.12 page 51 on [6]
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Before giving the proof, notice that working in the category of Ring Spectra is crucial here. In fact if
we are allowed to consider map which are not morphisms of ring spectra, then the proposition is false, for
example, for any non trivial ring R, π0(HR) ∼= R 6∼= 0.

Proof. Notice that S is a ring spectrum, where the product is the degree-wise smash product and the unit is
the identity Id: S→ S. Take any morphism of ring ϕ : S→ X. Then last diagram given by the axiom of ring
morphism with E = S, E′ = X and ı = Id gives the proof:

S S

S X

Id

Id ϕ

ı

1.2 Homology and Cohomology induced by a Spectrum

Let E be an arbitrary spectrum.

• Define covariant functors Ẽn : CW• → Ab where Ẽn(X) := πn(E ∧ Σ∞X) for every X ∈ CW• and

Ẽn(f) := πn(IdE ∧Σ∞f) for every morphism f : X → Y of pointed CW complexes. One can verify
that it is a reduced homology theory and that it is additive. See [6] page 63 construction 3.13.

• One can build cohomology theories as well, by defining contravariant functors Ẽn : CW• → Ab by
setting Ẽn(X) := [Σ∞X,ΣnE] for every X ∈ S and

Ẽn(f) : [Σ∞Y,ΣnE]→ [Σ∞X,ΣnE] Ẽn(f)[g] := [g ◦ Σ∞f ]

for every f : X → Y and g : Σ∞Y → ΣnE. As before, one can verify that this defines an additive
reduced cohomology theory on CW•.

Every morphism ϕ : E → F of spectra induces a morphism ϕ∗ : Ẽ∗(−)→ F̃∗(−) of homology theories and a

morphism ϕ : Ẽ∗(−)→ F̃∗(−) of cohomology theories. Here

ϕ = {ϕXi : Ẽi(X)→ F̃i(X)}, ϕ[f ] = [(ϕ ∧ IdX) ◦ (f)]

for every f : ΣiS→ E ∧X for homology and

ϕ = {ϕiX : Ẽi(X)→ F̃i(X)}, ϕ[f ] = [(Siϕ) ◦ f ]

for every f : X → ΣiE for cohomology. So we have a functor from spectra to (co)homology theories. In
particular, equivalent spectra yield isomorphic (co)homology theories.

In order to obtain unreduced (co)homology theory we just define E∗(X) := Ẽ∗(X+) and E∗(X) := Ẽ∗(X+)
as 1the reduced (co)homology of the space with an adjoint basepoint.

2 Tuesday

2.1 A brief recall of (B, f)-structures

Recall the following: let BO(n) be the infinite dimensional Grassmannian of n-planes, i.e. Gr(n,R∞).
It’s well-known that BO(n) is the classifying space for the n-dimensional real vector bundle. We have a
universal O(n)-principal bundle EO(n) → BO(n), where EO(n) is the so called Stiefel manifold V (n,R∞),
seen as a colimit of finite dimensional Stiefel manifolds V (n,Rk), for n ≤ k. Recall that V (n,Rk) is n − 1
connected.

Definition 2.1.1. A (B, f) structure B is a collection of pointed spaces Bn and strictly commutative
diagrams
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Bn BO(n)

Bn+1 BO(n+ 1)

fn

gn Bin

fn+1

where the maps fn are required to be based fibrations. We require additionally that B0 = ∗.

As a shorthand for the iterated composition of the gn’s, we will denote with gn,m := gm−1 ◦gm−2 ◦ · · ·◦gn.
We will denote with O the trivial (B, f)-structure with Bn = BO(n) and fn = Id. Other well-known
(B, f)-structures which we will use often are EO and U , the framed and stable almost complex structure
respectively. Their precise definition can be found on [1] at page 14− 15.

Definition 2.1.2. A multiplicative (B, f)-structure B also has natural based maps

µB
n,m : Bn ×Bm → Bn+m

for all n,m ∈ N, such that the following diagrams commute:

• Naturality

Bn ×Bm Bn+m

BO(n)×BO(m) BO(n+m)

µB
n,m

fn×fm fn+m

µOn,m

• Associativity

Bn ×Bm ×Bk Bn+m ×Bk

Bn ×Bm+k Bn+m+k

µB
n,m×1

1×µB
m,k µB

n+m,k

µB
n,m+k

• Compatibility and Unitality We require that the product is compatible with the gn’s in the following
ways.

Bn Bn ×Bm Bm

Bn+m

1×∗

gn,m+n
µB
n,m

∗×1

gm,n+m

Specializing to B0 = ∗ and gn,n = Id we get that the product µB
n,m has a unit, namely ∗.

Bn ×Bm Bn ×Bm+k

Bn+m Bn+m+k

Bn ×Bm Bn+k ×Bm

1×gm,m+n

µB
n,m µB

n,m+k

gn+m,n+m+k

gn,n+k×1

µB
n,m µB

n+k,m
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Definition 2.1.3. Let B and B′ be two (B, f)-structures. A map of (B, f)-structures h : B → B′ is a
collection of maps hn such that the following diagram commutes, for every n ∈ N.

Bn B′n

Bn+1 B′n+1

gn

hn

g′n

hn+1

If B and B′ are multiplicative (B, f)-structures, then h is a map of multiplicative (B, f)-structures if, in
addition, for all indexes n,m ∈ N, the following diagram commutes.

Bn ×Bm Bn+m

B′n ×B′m B′m+n

µB
n,m

hn×hm hm+n

µB′
n,m

Remark 2.1.4. The first example of a (multiplicative) (B, f) structure is the trivial one, denoted by BO,
where the fibrations are simply the respective identities. Another (B, f) structure is the one originating by
the bundle EO(n)→ BO(n) (interpreted as a vector bundle)

EO(n) EO(n+ 1)

BO(n) BO(n+ 1)

pn

Ein

pn+1

Bin

Remark 2.1.5. Please note that if B is a (multiplicative) (B, f)-structure, we require that there is a map of
(multiplicative) (B, f)-structure h : EO → B.

Definition 2.1.6. A (B, f)-structure B on a smooth manifold M is a pair (h, ν̃) such that h : M → Rn+k

is an embedding with normal bundle N →M classified by ν and ν̃ is a lifting ν̃ : M → Bk of ν:

Bk

M BO(k)

fk
ν̃

ν

Proposition 2.1.7. An EO-structure (e, g) on a smooth manifold Mn corresponds to a framing of the normal
bundle ν (associated to e) of Mn

Proof. It’s easy to observe that the lifting of the classifying map g to EO(k) for some k corresponds to a
continuous association for each point m ∈ M of a k-frame for the normal bundle (which is assumed to be
k-dimensional. More formally (and less geometric) a map ν : Mn → BO(k) factor through a contractible
space EO(k) if and only if it’s null-homotopic, i.e. if and only of the bundle classified by ν is trivial.

Example 2.1.8. A manifold with BU -structure is also called a stable almost complex structure, since up to
stabilization its normal bundle admits an almost complex structure. Of course, complex manifold are stably
almost complex.

There is another interesting example that we want to consider.

Example 2.1.9. Recall that the quaternions H are the non commutative division algebra defined by

H = R〈1, i, j, k〉

where i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik. We define the group Sp(n) =
GLH(Hn) ∩ U(2n) called the compact symplectic group. Being a subgroup of U(2n) ⊂ O(4n) we can build
fibrations BSp(n) → BO(4n). Manifold with a Sp-structure are called stable quaternionic manifolds, i.e.
manifold whose normal bundle (up to stabilization) admits a quaternionic structure.
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We define a the equivalence relation of bordism on the set of manifolds with (B, f)-structure B. Disjoint
union makes the set of equivalence classes ΩB

∗ into a graded group and if B is a multiplicative structure then
the Cartesian product makes ΩB

∗ into a graded ring.
We define the negative of a manifold (Mn, e, g) as the manifold at level 1 of the manifold with B-structure
(M × I, e× i, g × fr) where

e× i : M × I → Rn+k ⊕ R2

(m, t) 7→ (e(m), cos(πt) · e1 + sin(πt) · e2

g × fr : M × I → Bk × EO(1) ⊆ Bk+1

(m, t) 7→ (g(m), cos(πt)e1 + sin(πt)e2)

where we used the fact that we require the existence of a map EO → B.

Definition 2.1.10. Two closed manifolds with B-structure (Mn, e, g) and (Nn, f, h) are bordant if there is
a manifold with B-structure (Wn+1, E,G) such that

∂(Wn+1, E,G) = (Mn, e, g)
⊔
−(Nn, f, h)

Lemma 2.1.11. Bordism is an equivalence relation

Proof. This is Lemma 1.5.2 in [1].

Proposition 2.1.12. Let B be a (B, f)-structure.

• The set ΩB
∗ is a graded abelian group under the operation of disjoint union

• If B is a multiplicative (B, f)-structure then ΩB
∗ is a graded ring with the operation of multiplication

given by the Cartesian product.

Proof. This is Proposition 1.5.3 in [1].

2.2 The construction of the Thom Spectra MU and the Thom-Pontrjaing The-
orem

Now let B be a (B, f)-structure, and let ωn denote the universal O(n)-bundle over BO(n). Recall that
we have the following commutative diagram:

Bn Bn+1

BO(n) BO(n+ 1)

gn

fn fn+1

Bin

Over Bn we have the bundle γn = f∗nωn and

g∗nγn+1 = g∗nf
∗
n+1ωn+1 ' f∗n(Bin)∗ωn+1 ' f∗n(ωn ⊕ ε1) ' f∗nωn ⊕ ε1 = γn ⊕ ε1

where the only non-trivial check is (Bin)∗ωn+1 = ωn ⊕ ε1.
Thus gn induces a bundle map

γn ⊕ ε1 → γn+1

and hence a map
M(gn) : ΣM(γn)→M(γn+1)

of Thom complexes.

Definition 2.2.1. We define the Thom Spectrum MB to be the following spectrum: as objects we have
(MB)n := M(γn) and as structure maps we take M(gn) : Σ(MB)n → (MB)n+1

In particular MO(n) := Th(γn). In order to define MU , we consider the following (B, f)-structure
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BU(n) BO(2n)

BU(n) BO(2n+ 1)

in

Id Bin

Bin◦in

and a (B, f)-structure for a manifold represents exactly a stable almost complex structure. Pulling back
via the inclusion in the universal bundle over BO(2n) gives us the universal bundle over BU(n) (call it
ωn : EU(n) → BU(n)). We define the spectrum MU as follows: (MU)2n = MU(n) and (MU)2n+1 =
ΣMU(n). Structure maps are the maps induced by the classifying map rn : BU(n)→ BU(n+ 1).

Lemma 2.2.2. MO(1) ' RP∞ and MU(1) ' CP∞.

Proof. This is Lemma 2.6.5 page 61 in [1]. Let

π : EO(1)×O(1) R→ BO(1)

the associated vector bundle to the principal bundle γ1. By construction its Thom space is MO(1). Recall
that BO(1) = RP∞, and let πn denote the pullback of π to RPn. Then the sphere bundle of πn is the
canonical S0-bundle Sn → RPn, Thus

S(π) = lim
n→∞

Sn = S∞

which is contractible. Since the image of the zero section of π is a strong deformation retract of D(π), the zero

section fromBO(1) toD(π)
/
S(π) = MO(1) is a homotopy equivalence. Analogously forMU(1) ' CP∞

Remark 2.2.3. It is worth mentioning that if we have a multiplicative (B, f)-structure B, then we obtain a
ring spectrum MB, whose product is the one induced by the product we have on B, and unit i : S → MB
induced by inclusion of the fibre i0 : S0 →MB0 over the basepoint.

We can now state the celebrated Pontrjagin-Thom isomorphism in this more general setting

Theorem 2.2.4. Let B be a (multiplicative) (B, f) structure. We have an isomorphism of (rings) graded
abelian group

ξ : ΩB
∗ → π∗(MB)

[M, e, g] 7→Mg ◦ c

where c : Sn+k → M(ν) is the Pontrjagin-Thom collapse map, where we assumed e : M → Rn+k and we
denoted with M(ν) the Thom space of the normal bundle ν of (M, e).

3 Tuesday afternoon

3.1 A Crash Course in Spectral Sequences

What is a Spectral Sequence

We will list here the main properties of a first quadrant spectral sequence, clearly this will be only a brief
introduction but the aim is to motivate certain passages and reasoning that will be used in the following
sections:

Definition 3.1.1. A cohomology spectral sequence (starting at the page Ea) in an Abelian Category A
consists of the following data:

1. A family {Epqr } of objects of A defined for all integers p, q and r ≥ a

2. Maps dpqr : Epqr → Ep+r,q−r+1
r that are differentials in the sense that drdr = 0
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3. Isomorphism between Epqr+1 and the cohomology of (E∗∗r , dr) at the spot Epqr :

Epqr+1 ' ker(dpqr )
/

Im(dp−r,q+r−1
r )

Example 3.1.2. A first quadrant spectral sequence is one with Epqr = 0 unless p, q ≥ 0, that is, the point (p, q)
lies in the first quadrant of the plane. (If this condition holds for r = a, it clearly holds for all r). If we fix p
and q, then Epqr = Epqr+1 for all large r (more specifically r > max{p, q + 1}), because the dr landing in (p, q)
spot come from the second quadrant (i.e is 0), and the dr leaving Erpq land in the fourth quadrant (i.e. is 0).
We write Epq∞ for this stable value of Epqr .

Definition 3.1.3 (Bounded Convergence). We say that a bounded spectral sequence converges to H∗ if we
are given a family of objects Hn of A, each having a finite decreasing filtration

0 = F sHn ⊆ · · · ⊆ F p+1Hn ⊆ F pHn ⊆ F p−1Hn ⊆ · · · ⊆ F tHn = Hn

and we are given isomorphisms Epq∞ ' F
pHp+q

/F p+1Hp+q .

In almost all of the applications of Spectral Sequences in this seminar, Hn will be a filtered module for
any n ∈ N. In this setting, we call that the graded module

grHn :=
⊕
m

FmHn
/Fm+1Hn

the associated graded module.
This suggests the first big limit of spectral sequences: they give to us information about the associated graded
module (see the definition of the infinity page) and in order to retrieve Hn from grHn we have to solve the
(highly non trivial) extension problem. In order to explain what is this problem, consider the stable page of
a first quadrant Spectral Sequence:

...
...

...
...

...

E0,3
∞ E1,3

∞ E2,3
∞ E3,3

∞ E4,3
∞

E0,2
∞ E1,2

∞ E2,2
∞ E3,2

∞ E4,2
∞

E0,1
∞ E1,1

∞ E2,1
∞ E3,1

∞ E4,1
∞

E0,0
∞ E1,0

∞ E2,0
∞ E3,0

∞ E4,0
∞

0 0 0 0 0

...
...

...
...

...

We know that E00
∞ = F0H0

/
F1H0

. By the fact that all the elements on the same diagonal are 0, we have

0 ∼= En,−n∞
∼= FnH0

/Fn+1H0 hence for n > 0 FnH0 = Fn+1H0. Therefore after climbing this ladder of
equalities we get inductively F 1H0 = 0. An analogous reasoning using the second quadrant this time shows
that F 0H0 = H0. Therefore by the very definition of convergence

E0,0
∞

def.∼= F 0H0
/F 1H0 ∼= H0.

Let’s have a look at the first diagonal, again by definition of convergence we have the following isomorphism:

E10
∞
∼= F 1H1

/F 2H1 E01
∞
∼= F 0H1

/F 1H1 .
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Using the same reasoning of the preceding case (i.e. we have 0 on the second and fourth quadrants) we can

conclude that F 0H1 ∼= H1 and F 2H1 ∼= 0, therefore E01
∞
∼= H1

/
E10
∞ . Equivalently we have the following

s.e.s.
0→ E10

∞ → H1 → E01
∞ → 0

Now we proceed as before for the second diagonal and we have

E20
∞
∼= F 2H2

/F 3H2 E11
∞
∼= F 1H2

/F 2H2 E02
∞
∼= F 0H2

/F 1H2 .

which gives us the following two short exact sequences

0→ E20
∞ → F 1H2 → E11

∞ → 0

0→ F 1H2 → H2 → E02
∞ → 0

In general once you reach the stable page, just solve consecutive extension problems starting from Ep0∞ , and
the last extension will provide you the right result. We can sum up together all this information in the
following short exact sequence of graded modules:

0→ F •+1Hp+• → F •Hp+• → Ep,•∞ → 0

This will turn out to be important later. Recall that if for some reason we know that the s.e.s. are split
exact then we can easily retrieve H∗ from the extension problem since inductively we get

Hk ∼=
⊕

p+q=k,p,q≥0

Epq∞

Additional Structure on a Spectral Sequence

We will list here a list of additional feature of a spectral sequence which can come in handy for extra-
polating as much information as possible. It should be clear now that in theory they are a strong tool but
not so often one is able to solve the extension problem or finding the stable page. Additional structure will
provide more ways to reach the stable page or to find the right extension. We start recalling the multiplicative
structure of a spectral sequence.

Definition 3.1.4 (Multiplicative Structure). A cohomology spectral sequence Ep,q2 ⇒ C∗ is called multi-
plicative if the following properties hold:

1. all the (Es,tr , dr) are bigraded algebras, i.e. Es,tr · Eu,vr ⊂ Es+u,t+vr

2. C∗ is a filtered algebra, i.e. F pCm · F qCn ⊂ F p+qCm+n

3. dr is a derivation and Er induces the product of Er+1 for all r ≥ 2.

4. C∗ induces the product of E∞.

The last point is especially important, since it correlates the product on the stable page to the product
(which in a lot of computations we don’t know) of the target object C∗.

Proposition 3.1.5. The Atiyah-Hirzebruch Spectral Sequence (from now on AHSS) is multiplicative and on
the second page the algebra structure is given by the usual cup product in singular cohomology.

Proof. See [1] prop. 4.2.9

Multiplicativity will play a huge role in our upcoming computations, apart from the fact that it will let
us find the cohomology ring of certain spaces, but property (3) will be crucial in finding the stable page.
The last property we want to address here is the presence of a pairing in the AHSS between the homology
and cohomology version. The pairing will translate what we know about cohomology in homology which is
somewhat harder to compute via spectral sequence. Even though the first feeling with cohomology is that it
is much richer and therefore harder to compute, the additional structure will play a huge role in finding out
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stable page and limit in the AHSS. On the contrary, since homology doesn’t have much structure, trying to
compute it via the spectral sequence directly without using the pairing is very hard.
If E is a ring spectrum (we will denote the (co)homology induced by it with E∗ and E∗) and X is a CW-
complex, then there is a pairing

〈−,−〉 : En(X)⊗ Em(X)→ Em−n(pt.)

defined by letting 〈f, g〉 be represented by

Sm
g−→ E ∧X+ 1∧f−−→ E ∧ ΣnE

Σnµ−−−→ ΣnE

Observe that for groups G,G′ evaluation of cochains on chains induces a map

Hn(X;G)⊗Hn(X;G′)→ G⊗G′

Composing with a group homomorphism G⊗G′ → G′′ gives a pairing

〈−,−〉 : Hn(X;G)⊗Hn(X;G′)→ G′′

Thus, if E is a ring spectrum, the map µ∗ : E−s(pt.)⊗ Et(pt.)→ Es+t(pt.) defines a pairing

〈−,−〉 : Hn(X;E−s(pt.))⊗Hn(X;Et(pt.))→ Es+t(pt.) (3)

Proposition 3.1.6. Let E be a ring spectrum, and let X be a CW-complex such that X = XN for some
natural number N . Assume that E∗(pt.) is bounded below. Consider the AHSS

E2
n,t
∼= Hn(X;Et(pt.)) =⇒ En+t(X)

and
En,t2 = Hn(X;Et(pt.)) =⇒ En+t(X)

then there is a natural pairing
〈−,−〉 : En,−sr ⊗ Ern,t → Es+t(pt.)

such that

1. the pairing on E2 ⊗ E2 is the pairing of (3)

2. 〈dr(x), y〉 = 〈x, dr(y)〉 for all x ∈ En,−sr and y ∈ Ern+r,t−r+1

3. the pairing on E∗(X)⊗ E∗(X) induces the pairing on E∞ ⊗ E∞

Proof. See [1] Proposition 4.2.10, page 129.

Before concluding this section, we will define here the edge homomorphism and we will identify them in
the case of the AHSS. Edge homomorphisms are maps which arise if there is a transition from a quadrant
with only zeroes and a possible non trivial quadrant of a spectral sequence. So a first quadrant spectral
sequence will have two edge homomorphisms, in general AHSS has only one edge homomorphism. So let us
consider a spectral sequence whose second and third quadrant are zero:
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...
...

...
...

...

E0,3
2 E1,3

2 E2,3
2 E3,3

2 E4,3
2

E0,2
2 E1,2

2 E2,2
2 E3,2

2 E4,2
2

E0,1
2 E1,1

2 E2,1
2 E3,1

2 E4,1
2

E0,0
2 E1,0

2 E2,0
2 E3,0

2 E4,0
2

E0,−1
2 E1,−1

2 E2,−1
2 E3,−1

2 E4,−1
2

...
...

...
...

...

Since there are no non-trivial differentials hitting the 0th column, the stable objects there are simply subob-

jects of E0,p
2 . Using the fact that E0,n

∞
∼= En(X)

/
F 1En(X) we can fit all these information in the maps

En(X)→ E0,n
∞ ↪→ E0,n

2

It is clear that if the edge homomorphism is surjective, the last arrow is the identity and therefore E0,n
∞ = E0,n

2 .
This means that all the differentials starting from element in such column have to vanish.
In conclusion, one can proves that the edge homomorphism in the case of AHSS is simply the map induced
by the inclusion pt. ↪→ X, and therefore it is always surjective!

Relative Spectral Sequences

Recall that, for any (co)homology theory h∗, the equality h∗(X,A) ∼= h̃∗(X/A) holds. Therefore in order
to compute relative (co)homology groups for a pair of CW complexes it is enough to be able to compute
relative (co)homology groups. So we give here the following theorem

Theorem 3.1.7. Let F ↪→ E
p−→ B be a fibration with B a CW-complex. Let A ⊂ B be a subcomplex. Let

D = p−1(A). Let G be an unreduced (co)homology theory

• There is a homology spectral sequence with

E2
p,q = Hp(B,A;Gq(F ))⇒ Gp+q(E,D)

• If B is finite dimensional or if there exists an N so that Gq(F ) = 0 for all q < N , there is a cohomology
spectral sequence with

Ep,q2 = Hp(B,A;Gq(F ))⇒ Gp+q(E,D)

Proof. See [3] page 266 Theorem 9.33 or [4] page 351 Remark 2.

Taking A = ∗ and p = Id we obtain our statement for reduced (co)homology theories.

4 Wednesday

4.1 Generalized Orientation for Manifold, Bundles and (B, f)-Structures

Let us consider a (B, f)-structure B. Let (Mn, e, g) be a smooth manifold with a B-structure and let E
be a ring spectrum. Recall that we have the following commutative diagram:

13



Bm

Mn BO(m)

fm

νe

gm

Consider now the induced map g∗ : E∗(Bm)→ E∗(Mn). If ξ ∈ Ek(Bm), then

g∗(ξ) ∈ Ek(Mn)

is called the ξ-characteristic class of (Mn, e, g).
We generalize now the definition of an oriented manifold:

Definition 4.1.1. A manifold Mn is called E-oriented if there is a class ı ∈ En(Mn, ∂Mn), called an

E-fundamental class of Mn, which maps to a generator of Ẽn(Sn) under the canonical map

En(Mn, ∂Mn)
j∗−→ En(Mn,Mn \ {m}) ∼= En(D(m), S(m)) ∼= Ẽn(Sn)

for each m ∈ IntMn.

Remark 4.1.2. It’s important to clarify what we mean by generator here. A generator for Ẽn(Sn) is an

element x ∈ Ẽn(Sn) such that there exists a unit ξ ∈ π0E such that x = ξΣnı, where we denoted by ı the
class represented by ı, the unit morphism S→ E.

Remark 4.1.3. Note that if we take the Eilenberg-MacLane spectrum K(Z), a K(Z)-oriented manifold is an
oriented manifold in the usual sense.

Definition 4.1.4. If (Mn, e, g) is E-oriented, we define the ξ-characteristic number of (Mn, e, g) by

ξ(Mn, e, g) := 〈g∗(ξ), ı〉 ∈ En−k(pt.)

where we used the pairing between E∗(Mn) and E∗(Mn).

Let B = colimk Bk be the colimit along the maps gk : Bk → Bk+1. If all manifolds with B-structure are
E-oriented then we have a characteristic number map,

e : Ek(B)⊗ ΩB
n → En−k(pt.)

(ξ ⊗ [Mn, e, g]) 7→ p∗n+m(ξ) (Mn, e, g)

where pn+m : Bn+m → B is the canonical map given by the colimit construction of B. When [Nn, e, g] =
∂[Wn+1, ε, G] the E-fundamental class ıW ∈ En+1(Wn+1, Nn) satisfies ∂(ıW ) = ıN , where ∂ is the connecting
homomorphism in homology. Consider the following long exact sequence where j : Mn → Wn+1 is the
inclusion map.

ξ(Nn, e, g) = 〈g∗(ξ), ıN 〉 = 〈j∗G∗(ξ), ∂(ıW )〉 = 〈G∗(ξ), j∗∂(ıW )〉 = 0

Therefore the ξ-characteristic number doesn’t depend on the representative chosen to represent the bordism
class of [Mn, e, g].

We now define E-oriented vector bundles and E-oriented (B, f)-structure.

Definition 4.1.5. Let us consider a (B, f)-structure B and let E be a ring spectrum.

1. Let ξ : X → Y be a k-dimensional vector bundle. Consider Y to be the subset of X given by the zero
section. Then ξ is called E-oriented if there is an element U ∈ Ek(X,X \ Y ) ∼= Ẽk(M(ξ)), called the
Thom class of ξ, such that the restriction of U to

Ek(ξ−1(y), ξ−1(y) \ {y}) ∼= Ẽk(Sk)

is a generator of Ẽk(Sk) over π∗E for all y ∈ Y

2. A vector bundle ξ : X → Y has a B-structure if there is a map g : Y → Bk such that ξ is the pullback
via fk ◦ g : Y → Bk → BO(k) of the canonical bundle over BO(k).
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3. B is called E-oriented if the pullback πB
m of the canonical bundle over BO(m) along fm is E-oriented

for every m.

4. An E-orientation for a (B, f)-structure B is a collection of Thom classes of πB
m in Ẽm(M(πB

m) for every
m.

Proposition 4.1.6. We collect here some properties of an E-orientation of a (B, f)-structure.

1. The pullback of an E-oriented vector bundle is E-oriented

2. If B is E-oriented, then the normal bundle of every manifold with B-structure is E-oriented.

3. For any multiplicative (B, f)-structure B, the identity map of MB defines a MB-orientation of B.

4. If α : B → B′ is a map of multiplicative (B, f)-structures then Mα : MB → MB′ defines a MB′-
orientation of B.

5. BU is MSO-oriented, BSp is MU -oriented and EO is MB-oriented for any (B, f)-structure B.

Proof. 1. Let ξ : X → Y be an E-oriented n-bundle. Let f : Z → Y any continuous map. Let uξ ∈
Ẽn(M(ξ)) be a Thom class for ξ. We have the following commutative diagram by definition of pull-
back bundle

X ′ X

Z Y

f∗ξ

f̂

ξ

f

where f̂ is a fibre-wise isomorphism. Now we apply the functor M : VectBun → Top which gives us
the Thom space of a vector bundle and then the cohomology functor Ẽn

Ẽn(M(f∗ξ)) Ẽn(M(ξ))

Ẽn(Sn) Ẽn(Sn)

Ẽn(M(incl.)) Ẽn(M(incl.))

Ẽn(Mf̂)

Ẽn(M(f̂◦incl.))

where the lower horizontal arrow is an isomorphism by construction and therefore the class Ẽn(Mf̂)uξ
is a Thom class for f∗ξ by commutativity of the diagram.

2. By def. of a n-manifold with (B, f)-structure, the normal bundle is the pullback of the bundle πB
n .

This one is oriented by assumption and therefore by the preceding point we are done.

3. Recall that we added the assumption of being a multiplicative (B, f)-structure since we want to work
with a multiplicative spectrum. The identity defines a family of maps Idn : MBn → MBn which in

turn represent elements un ∈ M̃B
n
(MBn). In fact,

Idn : MBn →MBn

Idn : Σ∞MBn → Σ∞MBn

Idn : Σ∞MBn → Σ∞MBn ⊆ ΣnMB

So we need to prove that for every n ∈ N, un is the Thom class of πB
n . Consider the map of ring spectra

induced by inclusion of a fibre, we showed on Tuesday when speaking about (B, f)-structures that it
represents the unit ı : S → MB, and the restriction via the inclusion ın : Sn → MBn is exactly Σnı,
therefore it is a generator by definition (we are restricting the map induced by the identity in degree n
which is the identity).
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4. We proceed as in the previous point using the properties of a map of multiplicative (B, f)-structures.

5. There are maps of multiplicative (B, f) structures

EO → BSp→ BU → BSO → BO

induced by the natural inclusion of subgroups {1} ⊂ Spn ⊂ Un (after choosing as a model for B{e} the
space EO), Um ⊂ SO(2m) and SO(k) ⊂ O(k). Recall then that we require that there exists a map of
(B, f)-structure EO → B for any B, apply then the previous point.

5 Thursday

We show in the next lemma that a manifold is E-orientable if and only if its normal bundle is E-oriented.
The proof uses the following cap product construction. Let E be a ring spectrum, and let A,B be two
subcomplexes of a CW -complex X. Define the cap product

_ : Es(X,A)⊗ Es+t(X,A ∪B)→ Et(X,B)

by letting [x] _ [u] be represented by

Ss+t
u−→ E ∧X /A ∪B

1∧4−−−→ E ∧X /A ∧X /B
1∧x∧1−−−−→ E ∧ ΣsE ∧X /B

µ∧1−−→ ΣsE ∧X /B

where 4 : X /A ∪B → X /A ∧X /B is the diagonal map, x : X ∪CA→ ΣsE represents [x] ∈ Es(X,A) and
u : Ss+t → E ∧ (X ∪ C(A ∪B)) represents [u] ∈ Es+t(X,A ∪B)

Proposition 5.0.1. The cap product is natural, i.e. for f : (X;A,B)→ (X ′;A′, B′) a continuous map, the
relation

f∗(f
∗x′ _ u) = x′ _ f∗u

holds

Proof. The element f∗(f
∗x′ _ u) is represented by the composition

Ss+t
u−→ E ∧X /A ∪B

1∧4−−−→ E ∧X /A ∧X /B
1∧f∧1−−−−→ E ∧X ′ /A′ ∧X /B

1∧x∧1−−−−→
1∧x∧1−−−−→E ∧ ΣsE ∧X /B

µ∧1−−→ ΣsE ∧X /B
1∧f−−→ ΣsE ∧X ′ /B′

now notice that we can pull-back the rightmost f since is precomposed with identities to obtain

Ss+t
u−→ E ∧X /A ∪B

1∧4−−−→ E ∧X /A ∧X /B
1∧f∧f−−−−→ E ∧X ′ /A′ ∧X

′
/B′

1∧x∧1−−−−→
1∧x∧1−−−−→E ∧ ΣsE ∧X ′ /B′

µ∧1−−→ ΣsE ∧X ′ /B′

now using the easy equality (f ∧ f) ◦ 4 = 4 ◦ f we obtain the representative for x′ _ f∗u, namely

Ss+t
u−→ E ∧X /A ∪B

1∧f−−→ X ′ /A′ ∪B′
1∧4−−−→ E ∧X ′ /A′ ∧X

′
/B′

1∧x∧1−−−−→
1∧x∧1−−−−→E ∧ ΣsE ∧X ′ /B′

µ∧1−−→ ΣsE ∧X ′ /B′

Proposition 5.0.2. Let E be a ring spectrum. Let e : Mn ↪→ Rn+k be an embedding of a compact smooth
manifold Mn without boundary into an (n+ k)-dimensional subspace of R∞. Let N(Mn) be a closed tubular
neighbourhood of Mn in Rn+k with ν : N(Mn)→Mn the normal bundle. Then the following are equivalent:

• the vector bundle ν is E-oriented.

• Mn is E-oriented.
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Proof. (1) implies (2). Let c : Sn+k → N(Mn)
/
∂N(Mn) denote the (pointed) map Pontrjagin-Thom

collapse map. We recall how it was defined here:

c : Sn+k ∼=−→ (Rn+k)∗
†−→ Th(ν) ∼= N(Mn)

/
∂N(Mn)

where the dagger map is simply (with a little abuse of notation)

x 7→

{
x if x ∈ N(Mn)

basepoint if x 6∈ N(Mn)

We make the identifications

Ẽ∗
(
T (Mn)

/
∂T (Mn)

)
∼= E∗(T (Mn), ∂T (Mn)) ∼= E∗(T (Mn), T (Mn) \Mn)

Let now ιk+n ∈ Ẽk+n(Sn+k) be an π∗E-generator of Ẽk+n(Sn+k), and let uν be an E-orientation of ν. Define

ιM := ν∗(uν _ c∗(ιk+n))

We show now that ιM is an E-fundamental class of Mn. If m ∈ Mn, let U be a closed neighbourhood of m
homeomorphic to a closed disk Dn such that ν−1(U) ∼= U × Rk. We identify ν−1(U) with U × Rk to ease
the notation. We show now that such ıM is an E-fundamental class of Mn. We will do it by proving that for
each m ∈Mn, ıM maps to a π∗E-generator of En(Mn,Mn \ {m}).
Consider now the following diagram

Ẽn+k(Sn+k)

Ẽn+k(D(ν)/S(ν)) Ẽn+k((U ×Dk)/∂(U ×Dk))

En+k(D(ν), S(ν)) En+k(D(ν), S(ν) ∪D′) En+k((U, ∂U)× (Dk, Sk−1))

En(D(ν)) En(D(ν), D′) En((U, ∂U)×Dk)

En(Mn) En(Mn,Mn \ IntU) En(U, ∂U)

En(Mn,Mn \ {m})

c∗ c
′
∗

∼=

∼=

uν_−

incl.

uν_−

incl.

∼=

u′ν_−∼=

incl.

ν∗∼= ν∗∼= ν∗∼=

incl.

incl.

incl.
incl.∼=

∼=
incl.

In this diagram

c′ : Sn+k → U ×Dk
/
∂(U ×Dk)

is the map which collapses the exterior of U ×Dk to a point,

D′ = ν|−1
D(ν) (Mn \ IntU)

and u′ν ∈ Ek(U × (Dk, Sk−1)) is the canonical generator of E∗(U × (Dk, Sk−1)) ∼= E∗(Dk, Sk−1) over π∗E.

Claim 5.0.3. The diagram is commutative

Proof. The proof is pretty tedious, the first commutative square to check (more appropriately, the pentagon

on the top) commutes since at the end we land in En+k(D(ν), S(ν) ∪ D′) ∼= Ẽn+k

(
D(ν)

/
S(ν) ∪D′

)
and

therefore we can just forget what happens outside of S(ν) ∪ D′, in particular, the right path shows what’s
really relevant. The two squares which lies just below this pentagon commutes by naturality of the cap
product. The remaining squares commutes by the naturality of the l.e.s. of the respective pairs.
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Claim 5.0.4. the map c′ : Sn+k → U ×Dk
/
∂(U ×Dk) is a homeomorphism

Proof. Recall that U ∼= Dn, the rest is trivial.

Claim 5.0.5. The map u′ν _ − : En+k((U, ∂U)× (Dk, Sk−1))→ En((U, ∂U)×Dk) is an isomorphism

Proof. For a trivial bundle, capping with the Thom class coincide with the suspension isomorphism map.
See [2] page 249 Prop. 10.2.5

Now since the left-external path represents the restriction of in via the inclusion and the right path is a
composition of isomorphisms, the first implication is proved.
(2) implies (1) Since Mn is compact we can write

Mn = Nm1
∪ · · · ∪Nms

where each Nmi is a trivialized neighbourhood of M diffeomorphic to an open disk Dn.

Claim 5.0.6. We have a natural map

homE∗ (En(Nmi ,Mmi \ {mi}),E0(pt.))
∼=−→ En(Nmi , Nmi \ {mi})

Proof. Recall that we can identify En(Nmi ,Mmi \ {mi}) ∼= Ẽn(Nmi/Mmi \ {mi}) and that by construction

Nmi/Mmi \ {mi} ∼= Sn. Therefore for any f ∈ Ẽn(Nmi/Mmi \ {mi}) we have:

f : πn(Σ∞Sn ∧ E)→ π0(E) (4)

f : [ΣnS,Σ∞Sn ∧ E]→ [S, E] (5)

f : [S, E]→ [S, E] (6)

Where in passage (5) we used the fact that Σ−nΣ∞Sn ' S. Since f is assumed to commute with E∗, we
have that its uniquely determined by its value at the unit ı : S → E. Therefore the hom set in question
is isomorphic to [S, E] = E0(pt.) which, after following backwards the usual identifications, turns out to
be (naturally) isomoprhic with En(Nmi , Nmi \ {mi}). Naturality comes from the fact that the suspension
isomorphism is natural and when passing from the hom set of homology to cohomology we are basically using
the identity.

Now we can consider the following chain of identifications:

En(Nmi , Nmi \ {mi})

Ẽn+k(Σk (Nmi/Nmi \ {mi}))

En+k(Nmi × Rk, Nmi × (Rk \ {0}))

En+k(ν−1(Nmi), ν
−1(Nmi) \Nmi)

∼=Σk

∼=q∗

∼=ϕ∗i

where q∗ is induced by q : Nmi × Rk/Nmi × (Rk \ {0})→ Sk ∧Nmi/Nmi \ {mi} the quotient map, together
with the usual identification of the cohomology of a pair with the reduced one of the quotient. The map ϕ∗i
is induced by a local trivialization of the normal bundle of M . Since all these identifications are natural, by
starting with the image of i∗ıN (thanks to Claim 5.0.6) in the top group, we get a class in the lower group
which is natural w.r.t. restrictions, since i∗ıN is natural w.r.t. the restrictions (coming from a global class).
Let us denote with Vi ∈ En+k(ν−1(Nmi), ν

−1(Nmi)\Nmi) the class obtained via this process. Using induction
together with a Mayer-Vietoris sequence argument we can glue those V ′i s together (the class are natural)
and obtain a global class V ∈ En+k(ν−1(M), ν−1(M)\M) which clearly restrict to a generator on each fiber,
hence the vector bundle ν is E-oriented.
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6 Friday

It’s easy to see that the construction of a generalized (co)-homology theory carries over to the setting of
spectra and not just pointed CW -complexes (for example see [6]). If we work with the Eilenberg-MacLane
spectrum HG, for some abelian group G, we get the following equivalent definition for the homology H∗(E;G)
of a spectrum:

Hn(E;G) := colimkHn+k(Ek;G)

We have the following results:

Theorem 6.0.1. (i) Let E be a spectrum with πi(E) = 0 for i < n. Then Hi(E) = 0 for i < n, and the
Hurewicz homomorphism h : πk(E)→ Hk(E,Z) is an isomorphism for k = n and an epimorphism for
k = n+ 1.

(ii) For every spectrum E and every abelian group A, there are exact sequences

0→ Ext(Hn−1(E;Z), A)→ Hn(E;A)→ homZ(Hn(E), A)→ 0

and
0→ Hn(E)⊗A→ Hn(E;A)→ Tor(Hn−1(E);A)→ 0

Proof. See [6] Corollary 4.7 and Theorem 4.8 page 82.

We are ready to prove the main result of this class, i.e. the Thom Isomorphism Theorem for a E-oriented
vector bundle.

Proposition 6.0.2. Let E be a connective ring spectrum, and let ξ : X → Y be an E-oriented n-dimensional
vector bundle with Thom class uξ ∈ En(X,X \ Y ).

1. The map

Φ∗ : Ẽt+n(Mξ) ∼= Et+n(X,X \ Y )→ Et(Y )

z 7→ ξ∗(uξ _ z)

is an isomorphism

2. If Y is a finite dimensional CW complex, then the map

Φ∗ : Et(Y )→ Et+n(X,X \ Y ) ∼= Ẽt+n(Mξ)

w 7→ uξ ^ ξ∗(w)

is an isomorphism

Proof. 1. Notice that by definition E0(∗) = π0E = H0(E;Z). Let us consider H0(E;π0(E)). Since our
spectrum E is connective by assumption, by Theorem 6.0.1.i we have that H−1(E;Z) = 0 and therefore
by UCT we have, for every abelian group A, an isomorphism H0(E;A) ∼= homZ(π0(E), A). Therefore
if we set A = π0(E) we have

H0(E;π0(E)) ∼= homZ(π0(E), π0(E))

Now let us consider the following chain of isomorphisms

[E,K(π0(E))] ∼= H0(E;π0(E)) ∼= homZ(π0(E);π0(E))

where K(π0(E)) is the Eilenberg-MacLane spectrum associated to the abelian group π0(E). Define
J : E → K(π0(E)) corresponding to the identity in the latter group.

Claim 6.0.3. ξ is K(π0E)-oriented.
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Proof. A map of spectra induces a natural transformation of cohomology theories, so we have the
following commutative diagram

π0E En(Rn,Rn \ {0}) En(X,X \ Y )

π0E Hn(Rn,Rn \ {0};π0(E)) Hn(X,X \ Y ;π0(E))

Id

∼=

J J

incl.

∼= incl.

where commutativity in the square on the left is justify by the very definition of J : we choose it such
that the diagram commutes. Therefore J∗(uξ) is a Thom class for ξ and so the claim.

The cap product
_ : Es(X,X \ Y )⊗ Es+t(X,X \ Y )→ Et(X)

induces a pairing of AHSSes 3 such that the pairing Es,−p2 ⊗E2
s+t,q → E2

t,p+q is the classical cap product,

_ : Hs(X,X \ Y ;Ep)⊗Hs+t(X,X \ Y ;Eq)→ Ht(X;Ep+q)

Claim 6.0.4. Capping with the Thom class induces a map of spectral sequences:

ϕ2 : E2
t+n,k = Ht+n(X,X \ Y ;Ek(∗))→ E′

2
t,k = Ht(Y ;Ek(∗))

Proof. The easiest way to prove this is to observe that

Φ∗ : Ẽt+n(Mξ) ∼= Et+n(X,X \ Y )→ Et(Y )

induces a map between the exact couples generating the relevant AHSSes. In fact for

E2
t+n,k = Ht+n(X,X \ Y ;Ek(∗))→ Et+n+k(X,X \ Y )

the exact couple is

Ds,t = Ẽs+t (M (ξ|Y s))
Es,t = Es+t (M (ξ|Y s) ,M (ξ|Y s−1))

where we used the fact that the n+ s-skeleton of the Thom space is M (ξ|Y s). The maps in the exact
couple are the respective inclusions. For

E′
2
t,k = Ht(Y ;Ek(∗))→ Et+k(Y )

the exact couple is

Ds,t = Es+t(Y s)
Es,t = Es+t(Y s, Y s−1)

and the maps are again the respective inclusions. Now it should be clear to observe that the Thom
isomorphism induces a map of exact couples, which implies that it induces a map of AHSSes.

Now we need to identify what this map looks like on the second page of our AHSSes.
Consider the map of AHSSes ϕr, r > 2, induced by ξ∗(U _ −). Then

ϕ2 : E2
t+n,k = Ht+n(X,X \ Y ;Ek(∗))→ E2

t,k = Ht(Y ;Ek(∗))

is given by ϕ2(Z) = ξ∗(J∗(uξ) _ Z). Let us have a look at the reduced AHSS for the Thom space
M(ξ)

3Standard reference: http://www.numdam.org/item?id=SHC_1958-1959__11_2_A10_0, for a discussion http://mathoverflow.

net/questions/231131/cap-product-on-leray-serre-spectral-sequences
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...
...

...
...

...

0 · · · 0 H̃n(M(ξ);π3E) H̃n+1(M(ξ);π3E)

0 · · · 0 H̃n(M(ξ);π2E) H̃n+1(M(ξ);π2E)

0 · · · 0 H̃n(M(ξ);π1E) H̃n+1(M(ξ);π1E)

0 · · · 0 H̃n(M(ξ);π0E) H̃n+1(M(ξ);π0E)

0 · · · 0 0 0

...
...

...
...

...

By looking at the n-th diagonal, we have the identification

En(X,X \ Y ) ∼= Ẽn(M(ξ);π0E) ∼= H̃n(M(ξ);π0E) ∼= Hn(X,X \ Y ;E0(∗))

and by naturality it sends uξ to J∗(uξ):

En(X,X \ Y ) Hn(X,X \ Y ;E0(∗))

En(Rn,Rn \ {0}) Hn(Rn,Rn \ {0};E0(∗))

incl.∗

∼=

incl.∗

∼=

Thus ϕ2 is the classical Thom isomorphism (which is an isomorphism). By the mapping lemma4 we
know that since ϕ2 is an isomorphism, so are the ϕr, for r > 2. By the Comparison Theorem, since Φ∗
induces an isomorphism on each page of the AHSSes, then Φ∗ itself must be an isomorphism.

2. Consider the maps of AHSSes ϕr, for r ≥ 2, induced by uξ ^ ξ∗(−) and the pairing of AHSSes given
by cup product. Then

ϕ2 : Et,k2 = Ht(Y,Ek)→ Et+n,k2 = Ht+n(X,X \ Y ;Ek)

is given by ϕ2(W ) = J∗(uξ) ^ ξ∗(W ). Thus ϕ2 is the classical Thom Isomorphism and for the same
reasons above, Φ∗ is an isomorphism.

The Hurewicz homomorphism in generalized homology is defined just as the one in ordinary homology
by sending an element of π∗X to its value on the fundamental class.

Definition 6.0.5. Let X and E be spectra. The E∗-Hurewicz homomorphism,

hE : π∗X → E∗(X)

is defined by hE [f ] = f∗(ı) where f is an homotopy class [f : ΣkS → X] and ı ∈ Ẽk(Sk) is the canonical
E∗-generator.

The diagram in the following proposition exhibits a fundamental relationship between the E∗-characteristic
numbers of a manifold Mn and the value of the Hurewicz homomorphism on the Pontrjagin-Thom construc-
tion of Mn.

4 Exercise 5.2.3 and Theorem 5.2.12 page 125− 126 on Weibel
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Proposition 6.0.6. Let E be a ring spectrum, and let B be a (B, f)-structure which is E∗-oriented. Then
we have a commutative diagram

ΩB
∗ π∗(MB)

E∗(MB)

homE∗(E∗(B),E∗) E∗(B)

PT
∼=

ẽ

hE

∼=Φ∗

ζ

where PT is the Pontrjagin-Thom isomorphism and Φ∗ is the Thom isomorphism, ẽ is the adjoint map of
the characteristic number map e and ζ is the adjoint of the pairing of E∗(B) and E∗(B)

Proof. Let [Mn, e, g] be a manifold with B-structure, where e : Mn → Rn+k. Let ın+k be the canonical

generator of Ẽn+k(Sn+k). Observe that Φ∗c∗(ın+k) is a fundamental class ıM ∈ En(Mn) of Mn, in fact by
definition Φ∗c∗(ın+k) = ν∗ (th _ c∗(ın+k)), where ν is the normal bundle of e : Mn → Rn+k and th its Thom
class. By prop 5.0.2 the latter is (a possible choice of) ıM . Therefore:

Φ∗hEPT [Mn, e, g] = Φ∗hE(Mg ◦ c) (7)

= Φ∗(Mg)∗c∗(ın+k) (8)

= g∗Φ∗c∗(ın+k) (9)

= g∗(ıM ) (10)

If x ∈ E∗(B) is any class, then we have:

(ζΦ∗hEPT [Mn, e, g])(x) = 〈x,Φ∗hE(Mg ◦ c)〉 (11)

= 〈x, g∗(ıM )〉 (12)

= e(x⊗ [Mn, e, g]) = (ẽ[Mn, e, g])(x) (13)

there are important examples in which the canonical map

ζ : E∗(B)→ homE∗(E∗(B), E∗(pt.))

is a monomorphism. For example, this is the case for H∗(BO;Z2), H∗(BU ;Z), H∗(BSp;Z) and MU∗BU .
When it happens the diagram of the preceding proposition simplifies as follows:

Corollary 6.0.7. In the situation of the preceding proposition, assume that the pairing of E∗(B) with E∗(B)
induces a monomorphism

ζ : E∗(B)→ homE∗(E∗(B), E∗(pt.))

Then the following diagram commutes.

ΩB
∗ π∗(MB)

E∗(B) E∗(MB)

PT

ζ−1ẽ hE

∼=
Φ∗

Proof. By the diagram in Prop 6.0.6, Imẽ ⊆ Imζ. Therefore when ζ is a monomorphism, ζ−1ẽ is well-defined.
Thus this corollary follows from Proposition 6.0.6.

It follows from the preceding corollary that when both ζ and the hE are monomorphism, a bordism class
in ΩB

∗ is detected by its E-characteristic numbers.
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Corollary 6.0.8. Let E be a ring spectrum and let B be a (B, f) structure which is E-oriented. If ζ and
the Hurewicz homomorphism hE are monomorphism then a closed manifold (Mn, e, g) with B-structure is
the boundary of a compact (n+ 1)-manifold with B-structure if, and only if, all the E-characteristic numbers
of (Mn, e, g) are zero.
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7 TBD when

7.1 Oriented spectrum and the (Co)homology of CP∞

The aim of this section is to deal with the notion of an oriented spectrum and its properties. In order to
introduce the formal definition let us consider this example.

Example 7.1.1. Let (E,µ, ı) be a ring spectrum. Observe that CP 1 ∼= S2. We want to compute Ẽ∗(CP 1),
and we do it as follows:

Ẽ∗(CP 1) ∼= Ẽ∗(S2) ∼= Ẽ∗(Σ2S0) ∼= Ẽ∗−2(S0) ∼= π∗−2E

Since Ẽ∗ is a reduced cohomology theory and therefore we can use the suspension isomorphism. If we see the
cohomology as a π∗E-module, it’s free of rank 1 and it’s clearly generated, as a module, by the suspension of
the unit element Σ2ı since the action of the ring π∗E on the module is given by the multiplication and since
we have a down-shift of two indices.

Definition 7.1.2 (Oriented Spectrum). Let i : CP 1 → CP∞ denote the inclusion map. A ring spectrum E

with π∗E bounded below is called oriented if there is a class xE ∈ Ẽ2(CP∞), called orientation class, such

that i∗(xE) = Σ2ı, the canonical generator of Ẽ∗(CP 1).

Let us denote with xE the orientation of a spectrum E. Let in : CPn → CP∞ and in1 : CP 1 → CPn the

obvious inclusions. By definition xE ∈ Ẽ2(CP∞) is such that i∗1(xE) ∈ Ẽ2(CP 1) is a generator of Ẽ∗(CP 1) as
a π∗E module. To avoid confusion, we will denote the image of these classes to the unreduced cohomology
groups with the letter yE and the same decorations, i.e. i∗n(yE) ∈ E2(CPn).

Example 7.1.3. We give some examples of oriented spectra:

• We know that for any ring R
H∗(CP∞;R) ∼= R[x]

where i∗(x) is the canonical generator of H2(CP 1;R). Therefore the Eilenberg-MacLane spectrum is
oriented.

• Let K be the Bott spectrum which defines the complex K-theory:

Kn =

{
BU × Z if n even

U if n odd

Let f : CP∞ = BU(1)→ BU (see it as the complex Grassmannian G1(C∞)) be the canonical map and

let θ : CP∞ → BU be the constant map. Then f − θ defines a generator x of K̃2(CP∞) which is an
orientation of K.

• MU is oriented with orientation x ∈ M̃U
2
(CP∞) represented by

ξ : CP∞ ∼= MU(1)
Id−→MU(1)

In fact M̃U
2
(CP∞) := [Σ∞CP∞,Σ2MU ] which is seen to be isomorphic to:5

M̃U
2
(CP∞) := [Σ∞CP∞,Σ2MU ]stable

' [Σ∞CP∞,Σ2QMU ]strict

' [CP∞,Ω∞Σ2QMU ]∗

= [CP∞, (QMU)2]∗

5see https://ncatlab.org/nlab/show/Introduction+to+Stable+homotopy+theory+--+1-1 example 14
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Since MU is a CW-spectrum, the (QMU)2 ' colimk ΩkMUk+2, and it still makes sense to consider
the class of the identity here (consider k = 0 and post-compose the identity with the canonical map to
the colimit).

Note that i∗(x) is represented by S2 ∼= CP 1 i−→ CP∞ ξ−→ MU(1) which represents ı : S → MU and
Σ2ı : S2 → Σ2MU .

We show that the condition that a spectrum E being orientable is sufficient to determine the structure
of E∗(CP∞) as a power series ring.

Proposition 7.1.4. Let (E, xE) be an oriented spectrum. Then

1. E∗(CPn) ∼= π∗E[i∗n(yE)]
/

(i∗n(yE))n+1

2. E∗(CP∞) ∼= π∗E[[yE ]]

3. E∗(CPn) = π∗E{α0, . . . , αn} where αk is the dual basis element of (i∗n(yE))k under the pairing
E∗(CPn)⊗ E∗(CPn)→ π∗E.

4. E∗(CP∞) = π∗E{αk | k ≥ 0} where αk is the dual basis element of ykE under the pairing
E∗(CP∞)⊗ E∗(CP∞)→ π∗E.

5. E∗(CP∞ × CP∞) ∼= π∗E[[y1, y2]] where yi ∈ E2(CP∞ × CP∞) is defined by yi := p∗i (yE).

6. E∗(CP∞ × CP∞) ∼= π∗E{αj ⊗ αk | j, k ≥ 0}

Remark 7.1.5. The careful reader should now complain about point (2) of the proposition, since it seems
to be in contrast with what we know about singular cohomology. In fact we always used the fact that
H∗(CP∞) ∼= Z[yH ] but by point (2) it would be Z[[yH ]], the ring of formal series in the indeterminate x. A
priori one has only the cohomology groups, one for each degree. With the cup product (and more generally
with a multiplicative structure), we can form the product of two elements. Now we want to gather all of
these information in a graded ring. This can be done in two possible ways: The usual convention is to define
H∗ =

⊕
n≥0H

n; however, one could instead consider the product H∗ =
∏
n≥0H

n. The second choice is
more natural now for the following reason: in computing the cohomology ring of each of the projective spaces
CPn, there is no such ambiguity since the grading is finite. So when computing the cohomology of CP∞ as
a limit over the cohomologies of the CPn’s we have the natural option to take the limit in the category of
rings right away, instead of first taking it in groups, and then putting a graded ring structure on the result.
Now the limit of polynomial rings for increasing polynomial degree is the formal power series ring, therefore
H∗(CP∞) ∼= Z[[yH ]].

Proof. We will use the standard CW structure of CPn and CP∞ throughout the proof.

1. Recall that H∗(CPn;Z) ∼= Z[i∗n(yH)]
/

(i∗n(yH))n+1 , and consider the AHSS for CP 1:

Claim 7.1.6. The element i∗1(yH)⊗ ı ∈ E2,0
2 represents the orientation class i∗1(yE)

Proof. Let us have a look at the AHSS for CP 1:
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...
...

...
...

H0(CP 1)⊗ E3(∗) 0 H2(CP 1)⊗ E3(∗) 0 · · ·

H0(CP 1)⊗ E2(∗) 0 H2(CP 1)⊗ E2(∗) 0 · · ·

H0(CP 1)⊗ E1(∗) 0 H2(CP 1)⊗ E1(∗) 0 · · ·

H0(CP 1)⊗ E0(∗) 0 H2(CP 1)⊗ E0(∗) 0 · · ·

H0(CP 1)⊗ E−1(∗) 0 H2(CP 1)⊗ E−1(∗) 0 · · ·

...
...

...
...

Since the edge homomorphism for the AHSS is always surjective, we have that the only possible non
zero differentials (the differentials of the 2nd page starting from the zeroth column to the second one)
are trivial. This implies that the spectral sequence collapses. Since the second page is generated
multiplicatively by i∗1(yH)⊗ ı ∈ E2,0

2 and it is a free graded π∗E-module (i.e. the extension problem is

trivial) the isomorphism E2(CP 1)
∼=−→ E0,2

2 ⊕ E2,0
2 maps i∗1(yE) 7→ i∗1(yH)⊗ ı.

Claim 7.1.7. The AHSS for CPn collapses at the second page and we have that i∗n(yH) ⊗ ı ∈ E2,0
2

represents the orientation class i∗n(yE)

Proof. Let us have a look at the AHSS for CPn:

...
...

...
...

...

H0(CPn)⊗ E3(∗) 0 H2(CPn)⊗ E3(∗) 0 H4(CPn)⊗ E3(∗)

H0(CPn ⊗ E2(∗) 0 H2(CPn)⊗ E2(∗) 0 H4(CPn)⊗ E2(∗)

H0(CPn)⊗ E1(∗) 0 H2(CPn)⊗ E1(∗) 0 H4(CPn)⊗ E1(∗)

H0(CPn)⊗ E0(∗) 0 H2(CPn)⊗ E0(∗) 0 H4(CPn)⊗ E0(∗)

H0(CPn)⊗ E−1(∗) 0 H2(CPn)⊗ E−1(∗) 0 H4(CPn)⊗ E−1(∗)

...
...

...
...

...

Since the AHSS is multiplicative and thanks to the ring structure of the second page, it’s enough to
show that the element i∗n(yH)⊗ ı ∈ E2,0

2 is an infinite cycle. In fact, one proceed inductively using the
fact that any other element in the previous page (i.e. in the second page) is a π∗E-linear combination
of powers of i∗n(yH)⊗ ı.
Consider the inclusion in1 : CP 1 → CPn. We know that i∗n(yE) is sent to i∗1(yE) by the fact that
(in1 )∗i∗n = i∗1. Now recall that in1 induces a map of spectral sequences. Since we know that AHSS
for CPn converges a priori to E∗(CPn) (π∗E is required to be bounded below) there is an element
in the stable page Ep,q∞ , for some p, q ∈ Z which is a representative of i∗n(yE). By Claim 7.1.6, we
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already know that the representative of i∗1(yE) lies in E2,0
∞
∼= F 2E2(CP 1)

/
F 3E2(CP 1) . Now suppose

that the class of i∗n(yE) lives in F pEp+q(CPn)
/
F p+1Ep+q(CPn) , since the inclusion preserves the

filtration, it would send our class to an element lying in F
pEp+q(CP 1)

/
F p+1Ep+q(CP 1) , but since we

already established that the image of i∗n(yE) lies in F 2E2(CP 1)
/
F 3E2(CP 1) , it must be that p ≥ 2

and q = 0 (Since F pE2(CPn) ⊆ F p−1E2(CPn)). By definition of filtration, if this element lies in

F pE2(CPn)
/
F p+1E2(CPn) for p > 2 in particular its representatives lie in F 2E2(CPn) meaning that

when restricted to CP 1 they are all zero. Since we know that the restriction to CP 1 of the orientation
i∗n(yE) is a non zero element, it must be p = 2 and q = 0.
This shows that we have to look for a representative for i∗n(yE) in E2,0

∞ . Consider the following diagram,
where E′p,qr will denote the group in position p, q, page r of the AHSS for CPn:

E′2,0∞ E2,0
∞

E′2,02 E2,0
2

(in1 )∗

∼=
(in1 )∗

(in1 )∗

∼=

The lower map is an isomorphism since it is the map induced between the second singular cohomology
groups of CP 1 and CPn. The diagram implies that the unique preimage of the representative of
i∗1(yE) ∈ E2(CP 1), which by Claim 7.1.6 is i∗1(yH)⊗ ı, has to be i∗n(yH)⊗ ı, and therefore it has to be
an element of E2,0

∞ i.e. an infinite cycle. This readily implies that the AHSS collapses at the second
page, since it is multiplicative: the second page is generated multiplicatively by i∗n(yH)⊗ ı, and we just
showed that it is an infinite cycle, by an easy induction we have that the differentials in every page
must be zero since they are π∗E-linear derivations.

Claim 7.1.8. As an π∗E-graded module, E∗,∗∞
∼= E∗(CPn).

Proof. This is trivial, since using Claim 7.1.7 the stable page is the second page, and it is clearly a
free π∗E-graded module. Therefore the extension problem is trivial as remarked in the crash course on
spectral sequences, and we have the claim.

Claim 7.1.9. As a ring we have E∗,∗∞
∼= E∗(CPn).

Proof. We will denote with ^ the product on E∗(CPn) and with • the one on the stable page.
Using Claim 7.1.8, it’s enough to prove that the multiplicative structure one has (by definition) on

E∗(CPn), coincide with the one of E∗,∗∞ seen as π•E[i∗nyE ]
/

(i∗nyE)n+1 . To this end, since E∗(CPn) ∼=
π•E[i∗nyE , (i

∗
nyE)2, . . . , (i∗nyE)n] it suffices to prove that (i∗nyE)m ^ (i∗nyE)k = (i∗nyE)m+k (mod n+1).

Using associativity and induction it’s enough to prove that (i∗nyE) ^ (i∗nyE)m = (i∗nyE)m+1 (mod n+1).
We know that i∗nyE ∈ E2,0

∞ and that (i∗nyE)m ∈ E2m,0
∞ , and on the stable page (i∗nyE) ^ (i∗nyE)m =

(i∗nyE)m+1 (mod n+1). By the compatibility of the product structure of the stable page and on the
cohomology ring, this relation must hold on E∗(CPn).

2. For m < n let im,n : CPm → CPn denote the inclusion map. Since the inverse system i∗mn : E∗(CPn)→
E∗(CPm) satisfies the Mittag-Leffler condition

E∗(CP∞) ∼= lim−→E∗(CPn) ∼= lim−→
π•E[i∗nyE ]

/
(i∗nyE)n+1 ∼= π•E[[yE ]]

3. Consider the homological AHSS for E∗(CPn), using UCT we have:

E2
s,t = Hs(CPn)⊗ Et(∗)⇒ Es+t(CPn)
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Recall that, as a Z-module we have H∗(CPn) ∼= Z{a0, . . . , an} where ak is the dual of (i∗n(yE))k under
the identification H∗(CPn) ∼= hom(H∗(CPn);Z). Recall that we have a pairing for the AHSSes for
E∗(CPn) and E∗(CPn).

Claim 7.1.10. On the stable page the pairing E∞k,0 ⊗ Ek,−s∞ → Es(∗) is non-degenerate, i.e.

〈x, y〉 = 0 ∀x⇒ y = 0

and the AHSS for E∗(CPn) collapses

Proof. We merged these two statements into one claim since we will prove inductively one of them
assuming the previous step of the other one and so on.
On the second page, by Prop 3.1.6 we have that the pairing is non degenerate. In fact by our choice of
generator of the homology group

〈(i∗n(yE))k ⊗ ı, ak ⊗ b〉 = b

and clearly ı ∈ π0E. This means that

0
(1)
= 〈d2(i∗n(yE))k ⊗ ı, ak ⊗ b〉

(2)
= 〈(i∗n(yE))k ⊗ ı, d2ak ⊗ b〉

(3)⇒ d2ak ⊗ b = 0

where (1) is due to d2 = 0, (2) is by the properties of the pairing and (3) since by linearity of the
differentials and of the pairing it’s enough to test d2ak ⊗ b against i∗n(yE))k ⊗ ı alone in order to
invoke the non-degeneracy property. So we just proved that d2 = 0. Now we can proceed inductively
since Ek,02 = Ek,0r = Ek,0∞ and the inductive hypothesis E2

k,−s = Enk,−s to show that the pairing is non-

degenerate (since it coincides with the one on the second page) and dn = 0 which implies Ek,−sn+1 = Ek,−sn

and we can continue for higher indices. Since we are dealing with a convergent spectral sequence we
can conclude that

〈·, ·〉 : E∞k,0 ⊗ Ek,−s∞ → Es(∗)

is non degenerate and that the homological AHSS collapses at the second page.

For the same reason as in the proof of the first point, we can identify E∗,∗∞ with E∗(CPn). Using the
fact that the pairing between the stable pages is induced by the one between homology and cohomology
we have a non degenerate pairing

E∗(CPn)⊗ E∗(CPn)→ π∗E

Claim 7.1.11. The pairing E∗(CPn)⊗E∗(CPn)→ π∗E induces an isomorphism E∗(CPn) ∼= homπ∗E(E∗(CPn), π∗E).

Proof. We just showed that the pairing coincides with the one on the stable page, and the pairing on the
infinity page is the one on the second page since both AHSSes collapse. On the second page it’s clear that
the pairing is unimodular since it’s unimodular by construction the pairing H∗(CPn)⊗H∗(CPn)→ Z.
The conclusion follows at once.

Using Claim 7.1.11, we set αk = (i∗n(yE)k)∗, which by combining Claim 7.1.11 and Claim 7.1.6 is
represented by ak, and thus E∗(CPn) ∼= π∗{α0, . . . , αn}.

4. We need the following claim

Claim 7.1.12. E∗(CP∞) ∼= colimn E∗(CPn)

Proof. Apply Proposition 4.2.2 page 121 in [1] to X = CP∞
∐
∗ and Xn = CPn

∐
∗

Since CP∞ =
⋃
n≥1 CPn we have

E∗(CP∞) ∼= colimn E∗(CPn) ∼= colimn π∗E{α0, . . . , αn} ∼= π∗E{α0, . . . , αn, . . . }
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5. Let pi : CP∞×CP∞ → CP∞ for i = 1, 2 denote the two projection maps. Define yi ∈ E2(CP∞×CP∞)
by yi := p∗i (yE). Let jmn : CPm × CPn → CP∞ × CP∞ denote the inclusion map. Since

H∗(CPm × CPm) ∼= H∗(CPm)⊗H∗(CPm) ∼= Z[y1, y2]
/

(ym+1
1 , yn+1

2 )

where the first isomorphism is induced by the cross product. Recall that a × b = π∗1a ^ π∗2b (where
πi are the obvious projections) and therefore by naturality together with multiplicativity of the AHSS,
one can show inductively that the AHSS for the product E∗(CPm×CPn) collapses at the second page.
We can then apply verbatim the proof of the first point to conclude

E∗(CPm × CPn) ∼= π∗E[j∗mn(y1), j∗mn(y2)]
/

(j∗mn(y1)m+1, j∗mn(y2)n+1)

To conclude, as in the proof of the second point

E∗(CP∞ × CP∞) ∼= colimm,n E∗(CPm × CPn)

∼= colimm,n
π∗E[j∗mn(y1), j∗mn(y2)]

/
j∗mn(y1)m+1, j∗mn(y2)n+1

∼= π∗E[[y1, y2]]

6. The proof of the this last point is left as an exercise.

Recall this result:

Proposition 7.1.13. There is a map µn :
∏n
i=1BU(1)→ BU(n) which defines in homology an associative

and commutative product

(µn)∗ :

n⊗
i=1

H∗(BU(1))→ H∗(BU(n))

We will denote by µt,n the composition µt,n :
∏t
i=1BU(1)→ BU(t)→ BU(n).

• There are ck ∈ H2k(BU(n)) for 1 ≤ k ≤ n called universal Chern Classes such that

H∗(BU(n)) ∼= Z{c1, . . . , cn}

• Let aki ∈ H2k(BU(1)) defined as ak = (cki )∗. We still denote ak the element (µ1,n)∗(ak) ∈ H2k(BU(n))
with a little abuse of notation. Define

ak1 · · · akt := (µt,n)∗(ak1 ⊗ · · · ⊗ akt)

Then H∗(BU(n)) is the free abelian group with basis the set of all ak0 · · · akt for 0 ≤ t ≤ n.

Proof. See Theorem 2.3.1 page 39 and Proposition 2.4.1 page 48 on [1]

Using induction on n ≥ 1 we use various pairings of the AHSS to compute E∗(BU(n)) and E∗(BU(n))
for an oriented spectrum E.

Proposition 7.1.14. Let E be an oriented spectrum

1. The map µn :
∏n
i=1BU(1)→ BU(n) induces a map⊗

n

E∗(BU(1))→ E∗(BU(n))

Using this product, E∗(BU(n)) is the free π∗E-module with basis

{αk1 · · ·αkt | 1 ≤ k1 ≤ · · · ≤ kt and t ≤ n}
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2. There are classes cfk ∈ E2k(BU(n)) for 1 ≤ k ≤ n called Conner-Floyd classes such that

E∗(BU(n)) ∼= π∗[[cf1, . . . , cfn]]

3. E∗(BU) ∼= π∗E[[cf1, . . . , cfn, . . . ]]

4. E∗(BU) = π∗E[α1, . . . , αn, . . . ]

Proof. We will make use of induction on n ≥ 1 since BU(1) ' CP∞ and extensive use of naturality of AHSS.

1. The base step is done in the previous prop. Assume n ≥ 2 and consider the AHSS

E2
k,t = Hk(BU(n))⊗ πtE ⇒ E∗(BU(n))

We know that H∗(BU(n)) is the free abelian group with basis

{ak1 · · · akt | t ≤ n}

We want to prove that AHSS collapses at the second page. By naturality and induction, dr(ak1 · · · akt⊗
η) = 0 if t < n since such an element comes form the AHSS of BU(n−1) and we know that it collapses
at the second page. So we can assume that t = n. We want to show that dr = 0 for all r ≥ 2 and by
linearity of the differentials it’s enough to show it on elements of the form ak1 · · · akn ⊗ ı. Consider the
map

µn :

n∏
i=1

BU(1)→ BU(n)

dr(ak1 · · · akn ⊗ ı) = dr((µn)∗(ak1 ⊗ · · · ⊗ akn)⊗ ı)
= (µn)∗dr((ak1 ⊗ · · · ⊗ akn)⊗ ı)
= (µn)∗dr((ak1 × · · · × akn)⊗ ı)

where the last passage is due to the Künneth isomorphism in singular homology. Since we can express
cross product via cup product and induced maps, naturality and multiplicativity show that ak1 · · · akt
is an infinite cycle which represents αk1 · · ·αkt . Therefore the sequence collapses and since the stable
page is a free π∗E-module, E∗(BU(n)) ∼= E∞∗,∗ form a π∗E-basis for E∗(BU(n)).

2. Fix a positive even integer q. Consider the pairing of the AHSSes

Ek,t2 = Hk(BU(n)q)⊗ Et ⇒ E∗(BU(n)q)

and
E2
k,t = Hk(BU(n)q)⊗ Et ⇒ E∗(BU(n)q)

(The pairing exists for finite CW, that’s why we have to fix an even number q) Note that by Prop.
7.1.13 H∗(BU(n)q) has a basis consisting of the set of all ak1 · · · akt of degree at most q. Thus, the
homological spectral sequence listed above is a subspectral sequence of the one seen in the point before
and collapses. Therefore,

E∗(BU(n)q) = π∗E{αk1 · · ·αkt | t ≤ n and k1 + · · ·+ kt ≤ q/2}

Recall that H∗(BU(n)) = Z[c1, . . . , cn], where ck = (ak1)∗ under the identification of H∗(BU(n)) with
hom(H∗(BU(n)),Z). Therefore, H∗(BU(n)q) is the subgroup of Z[c1, . . . , cn] with basis all monomials
in the ck of degree at most q. Consider the pairing of the two spectral sequences wrote above. It’s
easy to see that on the second page such pairing is uni-modular and by the same reasoning of the
previous proposition we have a uni-modular pairing E∗(BU(n)q)⊗ E∗(BU(n)q)→ π∗E which induces
an isomorphism

E∗(BU(n)q) ∼= homπ∗E(E∗(BU(n)q, π∗E)

Let cfk = (αk1)∗ which projects to ck ∈ E2k,0
∞ . Then E∗(BU(n)q) is the free π∗E-module with basis all

monomials in the cf1, . . . , cfn of degree at most q. Since the inverse system of the E∗(BU(n)q) satisfies
the Mittag-Leffler condition,

E∗(BU(n)) = lim−→
q

E∗(BU(n)q) = π∗E[[cf1, . . . , cfn]]
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3. Just verify the Mittag-Leffler condition and conclude

4. homology preserve direct limits.
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